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ABSTRACT 

Systems & Processes Engineering Corporation (SPEC) has developed an 
innovative array processor architecture for computing Fourier transforms and 
other commonly used signal processing algorithms. This architecture is 
designed to extract the highest possible array performance from state-of-the-art 
GaAs technology. SPEC'S architectural design includes a high performance 
RISC processor implemented in GaAs, along with a Floating Point Coprocessor 
and a unique Array Communications Coprocessor, also implemented in GaAs 
technology. Together, these data processors represent the latest in technology, 
both from an architectural and implementation viewpoint. 

SPEC has examined numerous algorithms and parallel processing architectures 
to determine the optimum array processor architecture. SPEC has developed an 
array processor architecture with integral communications ability to  provide 
maximum node connectivity. The Array Communications Coprocessor embeds 
communications operations directly in the core of the processor architecture. 

A Floating Point Coprocessor architecture has beengefinedihat utilizes Bit-Serial 
arithmetic units, operating at very high frequency, tOpe-&rm floating point 
operations. These Bit-Serial devices reduce the device integration level and 
complexity to a level compatible with state-of-the-art GaAs device technology. 
Operating at clock frequencies in excess of 1 GHz, these Bit-Serial units compare 
favorably to  parallel units implemented in silicon technology, while providing 
inherent radiation hardness and superior speed-power product of GaAs. 

SPEC has selected Sun Microsystems' Scalable Processor ARChitecture (SPARC) 
as a basis for the high speed RISC processor. The SPARC is ideally suited for 
array processor applications, with a large register set, efficient instruction set, 
and simple implementation. The SPARC RISC processor has previously been 
implemented in a silicon gate array, with the design requiring less than 20,000 
gates. This compares very favorable to  other RISC processor implementations, 
which have required many times the device complexity. 

SPEC has selected Vitesse Semiconductor's enhancementldepletio mode process 
for design implementation. Vitesse's GaAs foundry is now offering G n ard Cell 
design capability up to 20,000 gates, which offers the best cost and performance 
alternative, and ensures success in a Phase I1 development activity. 

In selecting SPARC basis for the processor, SPEC has ensured a high level of 
software support and design activity for successfid commercialization of the 
product in Phase 111. At the end of Phase 11, SPEC will have demonstrated both a 
high performance DFT array processor architecture and GaAs RISC design. 
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1.0 Introduction 

Systems & Processes Engineering Corporation (SPEC) has conducted an in-depth 
investigation of signal processing algorithms, with the goal of developing a high 
performance, GaAs based, systolic array architecture suitable for 
implementation of these algorithms. As a result of this study, SPEC has 
developed an array architecture suitable for implementing a broad class of signal 
processing algorithms, with possible application to other computing problems, 
including computational physics and artificial intelligence problems. 

The study has been concentrated on algorithms for computing the Discrete 
Fourier Transform (DFT). The DFT has received considerable usage over the 
years in applications ranging from seismic well-logging, image analysis, and 
spectral analysis in the commercial and scientific sectors, to  communications 
signals intercept and sonar detection in the military sector. In many of the 
applications, the computation of the DFT is very time critical. Real-time 
applications involving image compression, digital Fourier spectroscopy, and 
harmonic analysis require the transformation of high speed data signals by 
specialized hardware capable of providing high system throughput and 
minimum latency. 

In addition to the Fourier transform, SPEC has investigated systolic array 
implementations of Kalman filter algorithms, Finite Impulse Response (FIR) 
algorithms, and image filtering algorithms. 

The primary limitation, observed in all classes of algorithms, is node connectivity. 
Solving the connectivity problem is key to the successfid implementation of a high 
performance array processor. Therefore, SPEC has developed an inter-processor 
communications architecture capable of providing flexible, high speed, and easily 
programmable inter-node communications. 

SPEC'S systolic array architecture features a GaAs implementation of a RISC 
processor, floating point coprocessor, and array communications coprocessor. A 
number of RISC architectures were evaluated for application to signal processing 
and compatibility with the state-of-the-art in GaAs integrated circuit technology. 

SPEC has selected the Sun Microsystems Scalable Processor ARChitecture, 
SPARC, for implementation of the systolic array processor. This architecture 
features a large register set, a flexible coprocessor interface, a simple instruction 
set, and because of it's simplicity, can be implemented with near-term GaAs 
integrated circuit technology. 

1 
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SPEC'S architecture also features very high speed, low gate count, bit-serial 
arithmetic and communication units in the floating point and communication 
coprocessors, respectively. Utilizing the very high speed of GaAs, currently with 
clock rates in excess of 1 GHz, bit-serial units can be used to form the core of 
complex arithmetic and communication units. A bit-serial VLSI architecture is, 
in fact, ideal for implementation of the communication links between processors. 
GaAs based bit-serial floating point arithmetic units will be of comparable 
performance to highly parallel silicon floating point units, while maintaining the 
inherent radiation hardness of GaAs and the approximately 1 O : l  speed-power 
product advantage of GaAs over ECL integrated circuits. 

The core GaAs RISC processor and coprocessors will maintain complete 32-bit 
external architectures. As a result, the processor and coprocessors will be 
suitable for implementation in single processor designs, as well as the proposed 
systolic array processor. This should significantly enhance the commercial 
viability of the product. 

After evaluation of the state-of-the-art in GaAs standard cell design and the 
complexity of the processor architecture, SPEC is confident that the proposed 
design can be successfully demonstrated in a Phase I1 program and successfiilly 
commercialized in a Phase I11 program. 

1 
I 
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20 Systolic Array Topologies 

A number of array topologies have been utilized in the past for interconnection of 
multiple processors. Array processors have been configured in 2-D, 3-D, Ring, 
Linear and Algorithm Specific topologies. 

Data can be transferred between nodes through serial or parallel communication 
links, through dual-ported random access memory (RAM), or  through shared 
(global) RAM. For arrays with connections between printed circuit boards, or for 
nodes with more than one o r  two communication links, implementation of dual- 
ported or shared RAM is impractical. 

Utilizing GaAs integrated circuits, very high speed serial communication 
channels are realizable, with the principal speed limitation being the physical 
link. In fact, by devising a communications coprocessor to  buffer the data and 
handle the physical link, the data transfer operation can be overlapped with the 
execution of floating point or fixed point calculations in the processor and other 
coprocessors. 

The operation of array processors falls into two basic categories: Single 
Instruction Multiple Data (SIMD) stream operation and Multiple Instruction 
Multiple Data (MIMD) stream operation. In a SIMD processor array all 
processors execute a common instruction stream, while operating on separate 
data. In a MIMD processor array, each processor is capable of executing a 
separate instruction stream while operating on unique data. 

An example of a mesh connected SIMD processor is the Geometric Arithmetic 
Parallel Processor (GAPP). The GAPP, is a array of l-bit processors, each 
communicating with its nearest neighbor in a 2-D plane. NCR Corporation 
currently manufactures a 6 x 12 processor array implementation of the GAPP 
with a bibserial ALU and 128 bits of static RAM per processor. 

Examples of MIMD machines include the Intel Hypercube array processor and 
Inmos Transputer based array processors. The Intel Hypercube processor 
features an array of standard 80386 processors with 80387 floating point 
coprocessors connected in a 3-D array. The Inmos Transputer, which is a VLSI 
32-bit processor with four 20 Mbit/sec serial communication channels available 
for inter-processor communication, can be configured in an arbitrary array 
topology. Inmos has developed the parallel processor programming language 
OCCAM for programming the Transputer. 

3 
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2.1 Two Dimensional Plane Topology 

Two dimensional topologies are suitable for computing matrix operations. For 
example, filtering of images using a local matrix transformation is ideally suited 
for a mesh connected 2-D systolic array. 

A diagram of a 2-D array is shown in Figure 2-1. In this implementation each 
node processor communicates with its nearest neighbor through a high speed 
communications coprocessor. The communications coprocessor buffers the data 
and manages the physical interface between nodes. 

Provisions can be made for failed processors to be mapped out of the array, with 
communications routed around the failed node. 

2 2  Three Dimensional Plane Topology 

A systolic array processor configured in a 3-D array is shown in Figure 2-2. In 
this configuration each node processor can communicate with its coplaner 
nearest neighbor and its nearest neighbors in adjacent planes. 

Each communication coprocessor manages six full-duplex communication links. 
Data can flow in any of the six directions out of a node, and can flow in basically 
any direction in the array; between planes, within planes, and a combination of 
the two. 

Each processor in the array can execute a portion of the algorithm, operating on 
all or a subset of the data, or each processor can execute the complete algorithm, 
operating on a fraction of the data. 

23 LinearTopology 

Pipelining of functional operations is usually accomplished with a linear array 
topology, such as that shown in Figure 2-3. With this array configuration each 
processor usually handles all of the data, performing one or more operations and 
passing the processed data to  the next node. 

Redundancy in communication links is also shown in Figure 2-3. This link 
redundancy serves multiple purposes: fault tolerance, increased throughput, 
data separation, and others. Multiple links between nodes can also be utilized in 
other array topologies. 

An example of a node bypass is also shown in Figure 2-3. If a processor fails, 
then the communications bypass link can be activated to map out the failed node. 

4 
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Figure 2-1 Two Dimensional Array Topology. 
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Figure 2-2 Three Dimensional Array Topology. 
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Array Communications 

Figure 2-3 Fault-Tolerant Linear Array Topology. 
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Also, if the algorithm dictates, the node bypass can also be used to rapidly transfer 
data to a down stream processor. A node bypass link can easily be implemented 
in other array topologies as well. 

2.4 RingTopology 

An example of a processor array configured as a ring is shown in Figure 2-4. 
This topology is basically a linear array, with the ends connected. This short- 
circuit can be utilized to transfer data between nodes over the shortest of two 
paths, instead of one path in a linear array. 

This topology also offers a degree of fault tolerance, with a failed node breaking 
one but not both of the ring communication paths. 

25 FFTSpecificTopology 

While 2-D, 3-D, and linear array topologies can be utilized to compute almost any 
conceivable algorithm, they generally are not optimized for a specific algorithm's 
communications requirements. Algorithm specific topologies can be developed to 
minimize inter-node communication requirements, i.e. each node only 
communicates with nodes that are required for data interchange and no data 
routing is required by a node processor. 

An array topology optimized for a Radix-2, Radix-4, or  Split-Radix Fast Fourier 
Transform (FFT) is shown in Figure 2-5. In this array data flows from left to 
right in the array, with each processor executing half of the operations required 
at each stage of the FFT. (The topology shown represents a length-32 transform 
which may be conveniently broken into 5 stages. A complete analysis is presented 
in Section 3.2.1.) 

Each stage of the length-32 FFT involves the computation of 16 "Butterflies." 
Therefore, a highly parallel FFT' optimized length-32 systolic array could have up 
to 16 processors per stage, with 5 stages for a total of 80 processors. Each 
processor would have to communicate with each of the 16 processors in the 
succeeding stage, i.e. have 16 serial communications links. 

A more optimum design might employ 2 (4) processors at each stage, executing 
8 (4) Butterflies and communicating with 2 (4) processors in adjacent stages, 
respectively. 

8 
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Figure 2-4 Ring Array Topology. 
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Figure 2-5 Fast Fourier Transform Array Topology. 
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The proposed design will have 8 full-duplex communication links, with expansion 
capability to 32 links. Thus, up to  eight GaAs processors can be utilized at each 
stage of a highly parallel FFT. (The total number of stages will be dependent on 
the length of the transform.) 

Other DFT specific array topologies will be discussed in detail in Section 3.2. 

2.6 Dynamic Reconfiguration and Data Routing 

Dynamic reconfiguration of an array topology can be easily accomplished by 
severing existing communication links between nodes and reconnecting the links 
in some other fashion with a digital switch. 

As an alternative, data routing can be performed by an intelligent communication 
coprocessor. Data can be packetized and routed between processor nodes by the 
coprocessors. Each data packet includes a unique destination address along with 
the data. As the data is passed from coprocessor to coprocessor, each coprocessor 
examines the data packet address, determines the optimum path out of the 
coprocessor to  the destination, and routes the packet along that path. This 
process continues until the data packet reaches the destination node. 

This sophisticated routing methodology is very powerful, but has some draw 
backs. For example, communication links can become overloaded causing delays 
in transmission, and the coprocessor must be much more intelligent (and 
therefore more highly integrated) to  process the packetized data. 

11  
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3.0 SystolicArrayAlgorithms 

3.1 overview 

A number of signal processing algorithms have been examined for suitability for 
adaptation to high speed systolic array processors, including the Fourier 
Transform, the Kalman filter, digital filters, and image processing filters and 
related algorithms. 

Generally, there are many computational approaches to  each algorithm, with 
each technique exhibiting selected advantages in terms of: 

Memory Requirements 
Relative Number of MultiplicatiodDivisiodAddition Operations 
Number of High Level Functions, such as Sine and Cosine 
Numerical Accuracy 
Adaptability to Parallel Processing Systems 

3.2 Fourier Transform Algorithms 

Since the development of the original Fast Fourier Transform by Cooley and 
Tukeyl, numerous techniques have been developed to compute the Fourier 
Transform, including the basic Radix-2 algorithms,2-7 the Winograd (WFTA) 
algorithm,8JJ the prime factor algorithm (PFA),lWl the Real-factor FFT,12 and 
others.13-15 The Radix-2 and Radix-4 algorithms are probably the most widely 
utilized transforms, and for most applications the most practical. The simple 
"Butterfly" structure of the algorithms allows the transforms to be done 
"in place", with intermediate results overwritten at the end of each successive 
stage to provide maximum memory efficiency, and the regular structure of the 
transforms allows a relatively simple software implementation. While the 
WFTA, PFA, and Real-factor FFT are more computationally efficient, requiring 
fewer total multiplications and additions, they are not as numerically well 
conditioned as the Radix-2 and Radixd algorithms. 

The primary objective of most Fast Fourier Transform (FFT) algorithms is to 
reduce the total number of mathematical operations (or replace complex 
mathematical operations, e.g. multiplication, with less complex operations, e.g. 
addition) required to compute the transform. However, reducing the total number 
of mathematical operations may be less important than other considerations, 
such as: the flexibility in the values that the transform length, N, may assume; 
the numerical accuracy required for the particular implementation; and the 
possibility of doing the transform in place. 

12 
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Some transform implementations are specifically designed to facilitate high speed 
parallel and pipelined hardware implementations, often at the expense of 
additional intermediate memory requirements or an increased number of 
ma thema tical operations . 
The basic Fourier Transform of the data sequence x(n) is defined by 

;3c 
N 

N - 1  -j-nk 
X(k) = c x(n) e 1 

n = O  

where x(n) represents an input data sequence, indexed by n, and X(k) represents 
the output data sequence, indexed by k. The indices n and k are commonly 
referred to as the time index and the frequency index, respectively. The time 
sequence interval, At ,  is assumed to be constant. The length of the data array to be 
transformed is denoted by the variable N. The transform equation is customarily 
written in a more abbreviated form 

N - 1  

X(k) = c x(n) Cik 2 
n=O 

where the coefficient C represents the complex exponential shown in Eqn. (1). 

A decrease in the computational complexity can be realized by changing the 
indexing in Eqn. (2) to take advantage of symmetry in the evaluation of the 
complex coefficient. 

32.1 Cooley-"ukey Radix-2 and SplibRadix FTT 

Let the index n be represented by n = 2p + q, where q = 0 , l  and p = 0,1,2, ..., 
(N/2 - 1). Substituting into Eqn. (2), we find 

q-0  p=o  

or  

13 
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q - 0  P=O 

4 

where the s u m  has been decomposed by a Radix-2 transform of the index n. 

A similar procedure can be used to perform a Radix-4 decomposition of the index 
p. Let the index p be represented by p = 4s + t, where t = 0, 1 ,2 ,3  and s = 0, 1,2, ..., 
(N/8 - 1). Substituting into Eqn. (4), we now find 

1 3 N8-1 
(4s + t)k 

X ( k ) = x  C:k x(2(4s+t) +q)CN2 
.. 

q = o  t - 0  s = o  

or 
1 3 N8-1 

X(k) = C: c C L  x(8s + 2t + q) Ci!8 
q = o  t = o  s-0 

where the number of complex multiplications is given by N (N/8 4 2) = N2, 
the same as in Eqn. (2). 

Now consider the case N = 32, where X(k) is given by 

e e 

and 
-jTsk 2% 

sk 
C4 = e  

7 

8 

The complex coefficient, C, can only assume four values, f 1 or f j. 

Multiplication by any of these four values can be readily implemented in software 
or  hardware without doing a hll complex multiplication (4 real multiplications, 2 
real additions), because multiplication by f 1 is really only a change of sign at 
most and multiplications by f j is only a change of sign and a swap. Both are 
elementary Butterflies. 

14 
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Thus, the arithmetic complexity of the innermost loop of Eqn. (7) has been 
substantially reduced. The number of full complex multiplications has been 
reduced by a factor of four, a significant savings. 

Similar Radix-2, Radix-4, Radix-8, or other higher radix decompositions can be 
used on the length-N transforms to achieve similar savings in arithmetic 
complexity . 
Recently, a "Split-Radix" FFT has been reportedls-18 which is a combination of 
Radix-2 and Radix-4 decompositions. It has been shown that the number of 
multiplications and additions required for the Split-Radix FFT is less than the 
number required for either a Radix-2 or a Radix-4 transform. While the software 
implementation of the Split-Radix FFT is somewhat more complex than the 
Radix-2 implementation, it is amenable to the same arithmetic reduction 
programming techniques. 

The Split-Radix FFT is based on the following decompositions of the even and odd 
terms of Eqn. (1): 

rv2-1 

X(2k) = (x(n) + x(n + :)) C r k  
n=O 

lW4-1 

X(4k + 1) = [(x(n) - x(n + f) - j (x(n + p) - x(n + +))I C i  C r k  9 
n=O 

. - .  . 
3n 4nk X(4k + 3) = [(x(n) - x(n + t) +j (x(n + p) - x(n + 3!))] C, C, 

n=O 

This decomposition relates a length-N DFT to one length-N/2 and two length-N/4 
DFTs with twiddle factorslg. Repetition of this decomposition process, for the N/2 
and N/4 DFTs, generates the Split-Radix FFT in much the same way as the 
decimation-in-frequency Radix-2 Cooley-Tukey FFT is derived. The last stage of 
decomposition is in fact a Radix-2 decomposition. 

Fast transforms, such as the Split-Radix FFT, are designed to minimize the total 
number of complex multiplications and additions. In a single processor 
implementation, this is important because all of the complex multiplications 
(4 real multiplications, 2 real additions) and complex additions (2 real additions) 

15 
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must be performed sequentially. Various coding techniques can also be utilized to 
reduce the computational complexity. For example, multiplications by j can be 
implemented in software (or hardware) as a swap of the real and complex parts 
with a change of sign of the resulting real part. 

A diagram of a length-32 Split-Radix FFT implementation is shown in Figure 3-1. 
A generalization of the mathematical operation shown at each stage of the 
transform is given in Figure 3-2. 

Examination of Figure 3-1 reveals that the Split-Radix FFT algorithm (like other 
Radix-N decompositions) is done in-place, with no additional intermediate storage 
memory required. For example, at the end of the first stage the contents of the 
memories containing the complex quantities x(0) and x( 16) are replaced by the 
complex quantities (x(0) + x(16)) and (x(0) - x(16)), respectively. The only 
temporary storage required is within the computational element (see Figure 3-2) 
during the complex addition and multiplication process. The outputs from each 
computational element become new elements in the modified data array produced 
at the end of each stage. This in-place processing capability can be exploited to  
produce a highly parallel implementation architecture. 

In a typical single processor Von Neumann implementation, the computer would 
be programmed to compute each of the Butterflies in stage 1, proceed to stage 2 
and compute all the Butterflies, and continue this process until all of the 
Butterflies in the last stage, stage 5 ,  are computed. 

A transform of length N = 2m results in m stages, with N/2 Butterflies per stage. 
The resulting transformed data is in "bit-reversed' order and must be reordered 
after the last transform stage. 

A hardware implementation of a Butterfly is shown schematically in Figure 3-3. 
Two complex inputs, A and B, are bussed into the processor, the s u m  computed 
and multiplied by the complex coefficient U, and the difference computed and 
multiplied by the complex coefficient D. The resulting complex products are 
subsequently bussed out of the processor. The complex coefficients U and D are 
static, and once loaded into the holding registers remain fixed. 

Implementing each of the Butterflies shown in Figure 3-1 with a single processor 
results in a highly parallel, pipelined DlV processor. The outputs from the 16 
processors in stage 1 are hardwired into the appropriate inputs of the stage 2 
processors, with the outputs of the stage 2 processors hardwired into the inputs of 
the stage 3 processors. This data flow continues to the end of stage 5. Bit reversal 
of the the output data is accomplished by hardwiring the outputs of the stage 5 
processors into the proper memory address. 

16 
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Figure 3-1 Length-32 Split-Radix DFT Algorithm Representation. 
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U [A + B] 

D [A - B] 

Figure 3-2 Generalization of Split-Radix DFT Node Arithmetic Operations. 
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Figure 3-3 Single Processor Implementation of a DFT Butterfly. 
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DFT 
Power  Length 

2 4 
3 8 
4 1 6  
5 3 2  
6 6 4  
7 128 
8 256 
9 51  2 

1 0  1024 
1 1  2048 
1 2  4096 
1 3  81 92 
1 4  16384 
1 5  32768 
1 6  65536 

1 Butterfly/Node 

Nodes I Inputs  loutputs 
4 2 2 
1 2  2 2 
3 2  2 2 
8 0  2 2 
192 2 2 
448 2 2 

1024 2 2 
2304 2 2 
51 20 2 2 
11 264 2 2 
24576 2 2 
53248 2 2 

114688 2 2 
245760 2 2 
524288 2 2 

16 ButterflieWNode 

Nodes I Inputs  IOutputs 

2 3 2  3 2  
5 3 2  3 2  

1 2  3 2  3 2  
2 8  3 2  3 2  
6 4  3 2  3 2  
144  3 2  3 2  
320 3 2  3 2  
704 3 2  3 2  

1536 3 2  3 2  
3328 3 2  3 2  
71 68 3 2  3 2  
15360 3 2  3 2  
32768 3 2  3 2  

Table 3-1 Single Stage DFT Processor Requirements. 

Table 3-1 lists the number of processors required to compute DFTs of various 
lengths. For example, a length-1024 DFT, one Butterfly per node, array would 
require 5120 processors. Likewise a length-4096 DFI’ array would require 24576 
processors, a prohibitive number of integrated circuits in both cases. 

Therefore, either each processor must compute more Butterflies or  each 
integrated circuit must include a larger number of processors to be practical. If 
each integrated circuit contains 16 processors, each capable of computing a 
Butterfly, or each processor sequentially computes 16 Butterflies, then a length- 
1024 DFT would require 320 integrated circuits, each with 32 inputs and 32 
outputs. A length-4096 DFT would require 1536 integrated circuits, with the same 
number of inputs and outputs. 

Another alternative to the single node, single processor approach is shown in 
Figure 3-4. A length-32 transform is implemented with a single set of 16 
processors configured to compute all 5 stages of the transform. The inputs A1 and 
B1 are the inputs used by the processors in stage 1 of the transform with 
corresponding coefficients and outputs, A2 and B2 are used as inputs for the stage 
2 calculation with corresponding coefficients and outputs. This recirculation 
continues through all 5 stages. The only increase in complexity in the processor 
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Figure 3-4 Multistage Processor Implementation of a DFT Butterfly. 
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DFT 
P owe r Length 

2 4 
3 8 
4 1 6  
5 3 2  
6 6 4  
7 1 2 8  
8 2 5 6  
9 51  2 

1 0  1024  
1 1  2 0 4 8  
1 2  4096  
1 3  8 1 9 2  
1 4  16384 
1 5  32768  
1 6  65536 

1 Butterfly/Node 

Nodes I Inputs [Outputs 
2 4 4 
4 6 6 
8 8 8 

1 6  1 0  1 0  
3 2  1 2  1 2  
6 4  1 4  1 4  
1 2 8  1 6  1 6  
2 5 6  1 8  1 8  
5 1 2  2 0  2 0  

1024  2 2  2 2  
2048  2 4  2 4  
4096  2 6  2 6  
81 9 2  2 8  2 8  
16384 3 0  3 0  

3 2 7 6 8  3 2  3 2  

2 Bu tterflies/Node 

Nodes I Inputs ]Outputs 
1 8 8 
2 1 2  1 2  
4 1 6  1 6  
8 2 0  2 0  

1 6  2 4  2 4  
3 2  2 8  2 8  
6 4  3 2  3 2  
1 2 8  3 6  3 6  
2 5 6  4 0  4 0  
51  2 4 4  4 4  

1024  4 8  4 8  
2 0 4 8  5 2  5 2  
4096  5 6  5 6  
81 9 2  6 0  6 0  
16384 6 4  6 4  

Table 3-2 Multiple Stage DFT Processor Requirements. 

is a clock input to toggle between the multiple input and output connections and 
the corresponding complex coefficients, and additional holding registers to  
accommodate the complex coefficients. The internal computational elements of 
the processor are identical. 

While the number of processors required is reduced by a factor of rn for a length- 
2m transform, the time required to compute a complete transform is now equal to 
the computation time per stage, T,, times the number of stages, or  T b d  = T, m. 

Table 3-2 lists the number of processors required to compute various length-N 
transforms using this approach. For example, a length-1024 DFT requires 512 
processors, with 20 inputs and 20 outputs. A length-4096 DFT' requires 2048 
processors, each with 24 inputs and 24 outputs. If however, each processor were 
to do two Butterflies instead of one, then the number of processors required for a 
length-1024 DFT is reduced to 256, with each processor requiring 32 inputs and 
outputs instead of 16. 

These two highly parallel architectures represent a brute force approach to 
computing a Fourier transform. These approaches have the advantage of not 
requiring any intermediate storage memory and can conceivably compute, on 

22 
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average, an arbitrary length FF'T in as little as one Butterfly computation period. 
However, an extremely large number of processors are required to implement 
this DFT specific systolic array architecture. 

32.2 BlockDFI' 

A decomposition of both the time and frequency indices, with a radix equal to  the 
square root of the transform length, results in a transform comprised of two equal 
length transforms. This type of decomposition is restricted to transforms of 
length-4m (m = 1,2,3, ...). The time index is decomposed by mapping the index 
into n = a*M + b, where M is the kernel radix (M = NIB = 2m) and a,b are the new 
time indices. The frequency index is mapped into k = A + MOB (the change in 
nomenclature interchanges the rows and columns of the transformed matrix). 

For example, a length-42 transform, with a Radix-22 kernel, results in the time 
index decomposition n = 4a + b, with the indices a,b given by a = 0,1,2,3 and b = 
0,1,2,3, with b incrementing faster. A similar decomposition for the frequency 
index k results in the mapping k = A + 4B, with the indices A,B taking on the 
values A = 0,1,2,3 and B = 0,1,2,3. 

The square array x(a,b) maps into the sequential data array x(n) as shown: 

Multiplying the indices n and k, we find 

nk = (4a + b)(A + 48) = 4aA + bA + 4bB + 16aB 11 

which results in the complex multiplier 

27c 27c 27c 27c -j-nk -j-aA -j-bA -j-bB 
nk 16 4 16 4 aA bA bB 

C,, = e = e  e e = '4 '16 '4 
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Substituting Eqn. (12) into Eqn. (2) results in the governing transform equation 

3 3 3 

b=O a=O b-0 
13 Ab bB 

X(A,B) = C,, C, Wy: x(a,b) c:A = c:: c9B 

where the intermediate transform, X(A,b), is given by 

3 

X(A,b) = Wyz x(a,b) C:A 
a-0  

14 

Note that Eqns. (13) and (14) are of identical structure, and the coefficients C4 are 
identical. In order to condition the input data, we have introduced a sequence of 
"window" coefficients,20,21 denoted by W. Introduction of the window coefficients 
into the equation results in this structural symmetry, which is exploited in the 
hardware architecture to  implement a two stage transform with identical 
processor elements. 

The transform can be implemented in two successive, identical stages. For a 
length-16 transform, each stage requires two 16-word memories, two 4-word 
memories, and a length-4 DFT processor capable of performing a complex 
multiply operation followed by a complex multiply accumulate operation. 

The two stage transform defined by Eqn. (14) can be readily adapted to a multiple 
processor configuration. Processors can be configured to compute rows of the 
intermediate transform array X(A,b) in parallel. After a row of the intermediate 
transform array is computed, a second set of processors can utilize the data to 
compute either a row or  column of the transformed array X(A,B) in parallel, 
depending upon the implementation. An array processor implementation of a 
length-16 block DFT is shown in Figure 3-5. 

Parallelism in the first stage is achieved by dedicating a processor element to 
evaluation of X(A,b) for each value of the index b (requiring four processor 
elements for a length-4 transform). The snmmation over a, for each value of b, is 
shown in Table 3-3. Each dedicated processor operates on a single column of the 
x(a,b) data array, along with the corresponding window coefficients. The Wax 
products are computed only once and stored in memory. After the Wax products 
are computed, the processors cycle through the C4 coefficients multiplying by the 
Wax products and accumulating the sum. The index into the C4 array is 
determined by the value of A. 

24 
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Figure 3-5 Length-16 Block DFT Array Processor. 
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Wi: x(1,O) C:" W i i  x(1,l) C I A  W i i  x(1,2) C i A  W:; x(1,3) C:" a =  1 

SUM =X(A,O) = X(A,l) = X(A,2) = X(A,3) 

Table 3-3 Parallel Processor Evaluation of the Transform X(A,b). 

A hardware implementation of the algorithm discussed above is shown in Figure 
3-6 for the case b = 0. A column of the raw signal data is loaded into the input 
registers in a load operation. (This loading procedure, and the order in which the 
data becomes available, is application dependent.) After the data is loaded, the 
raw signal data is clocked out of the input registers and multiplied by a window 
coefficient. A set of window coefficients is downloaded into each processor prior to 
operation, with each processor containing one column of the window coefficient 
array. Thus, the memory required to store the window coefficients is evenly 
distributed over all of the processor elements. 

The W*x products are utilized by the second stage of the processor to compute the 
sum shown in Table 3-3. The Cq registers are common to all of the processors. A 
s u m  is computed for each value of A, using A as an index into the C4 registers. 
For a length-4 transform each X(A,O) requires 4 multiply and accumulate cycles. 
The result is bussed out of the processor element serially to  the appropriate stage 
two processors. 

The memory required to hold the fixed constants is 8 complex words (2 sets of 
constants 4 complex worddset) for a length-16 transform . For a length-1024 
transform the total memory required per processor is 64 complex words (2 sets of 
constants 32 complex worddset). 
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Figure 3-6 Stage 1 Computation of a Length-16 Block DFT. 
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cy; X(0,O) c4"B c;; X( 1 ,O) cl c;; X(2,O) c4" cy; X(3,O) c4" b=O 

Cy; X(0,I) CIB C i i  X(1,I) C i B  C;: X(2,l) C: Cy; X(3,l) C i B  b = 1 

Cy: X(0,2) Cz C i i  X( 1,2) Cl C;: X(2,2) Cf Cy: X(3,2) Cl b 3 2  

Cy: X(0,3) C: Ci: X(1,3) C: C;: X(2,3) C: Cy: X(3,3) C: b = 3  

SUM =X(O,B) = X( 1 ,B) = X(2,B) = X(3,B) 

Table 3-4 Parallel Processor Evaluation of the Transform X(A,B). 

An identical set of processor elements can be utilized to compute the stage-2, 
length-4 transform, using the intermediate transform, X(A,b), as input data. 
Now, instead of window coefficients, each processor element is downloaded with 
the appropriate twiddle factors during the initialization procedure. The 
summation to be camed out (from Eqn. (13)) is shown in Table 3-4. 

Each processor element is configured to compute a summation corresponding to a 
fixed value of the frequency index A. A block diagram describing the processor 
element configured for the A = 0 summation is shown in Figure 3-7. Serial data is 
received from the stage one processors in the input registers, and is subsequently 
multiplied by the appropriate cl6 twiddle factors. 

The COX product is multiplied by the appropriate C4 coefficient, indexed by B, and 
the product accumulated. The result is the X(0,B) term of the Fourier transform. 
The time and memory required to compute the second length-4 transform is 
identical to that of the first length-4 transform. 

I 
1 

Table 3-5 shows the number of processors required to implement various length-N 
Block DFTs. As discussed, a length-16 transform requires two four processor 
stages, with each processor requiring four inputs and four outputs. A length-1024 
transform requires two 32 processor stages, with 32 inputs and 32 outputs for each 
processor. 
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Figure 3-7 Stage 2 Computation of a Length-16 Block DFT. 
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Processors I Inputs I outputs  
4 2 2 
8 4 4 

1 6  8 8 
3 2  1 6  1 6  
6 4  3 2  3 2  
1 2 8  6 4  6 4  
2 5 6  1 2 8  1 2 8  
5 1  2 2 5 6  2 5 6  

Table 3-5 Block DFT Processor Requirements. 

The processor architecture described in Section 4 can accommodate a maximum 
of 32 input and 32 output ports. The initial implementation will be designed with 8 
inputs and 8 outputs, thus the initial GaAs processor will be capable of computing 
transforms of up to length-64 using this algorithmic approach. A 32-port 
processor would be capable of handling DFT lengths of up to 1024. 

3.3 Other Signal Processing Algorithms 

In addition to the Fourier transforms discussed above, other related transforms 
such as the Fast Hartley transform,22-31 and the cosine transform,3%33 are well 
suited for implementation in a GaAs based systolic array. Two other commonly 
used signal processing processing algorithms are the Kalman Filter and the 
Finite Impulse Response Filter. 

3.3.1 Kalman Filter 

Recent investigations34 have shown that parallel processing techniques can be 
utilized to implement the measurement update step of the Kalman filter. SPEC'S 
processor design could be easily used to implement the parallel processor Kalman 
filter described in reference 34. 

303.2 DigitalFilters 

Digital filters, which operate on a stream of data, could be inplemented using a 
linear array topology such as that shown in Figure 2-3. A simple digital filter 
used for smoothing simply averages nearest neighbors. This could be readily 
implemented with the proposed processor. More elaborate image filters, such as 
a 2-D nearest neighbor matrix filter, could be implemented by connecting each 
processor node to it's eight nearest coplaner neighbors (9 point matrix filter). 
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3.4 Review of signal processln ' gAlgorithms 

The DFT algorithms presented are examples of the kinds of techniques that can be 
utilized to structure DFT algorithms in a manner such that implementation can 
be achieved in a highly parallel and distributed fashion. Each algorithm is 
conducive to implementation with very high speed GaAs Bit-Serial processors. 

The massively parallel architecture requires little intermediate memory, only 
temporary registers within the processor elements, and can be configured to 
compute a length-1024 transform in time T, , where T, is the computation time 
per stage. The latency of the array processor is Ts m, where m is the total 
number of stages. An obvious drawback to this architecture is the large number 
of processor elements required to implement a large length-N transform. 

The Block DFT implementation requires fewer processor elements, but requires 
more intermediate storage elements and more computations per processor. This 
technique is attractive however, because a much more reasonable number of 
processors is required to compute large length-N transforms. A drawback to this 
technique is the large number of input and output connections required to 
interconnect processor nodes. 
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4.0 GaAsProcessorArchitecture 

41 ArchitectumOverview 

SPEC has evaluated two basic approaches to designing a very high speed DFT 
systolic array processor, each requiring a comparable level of device integration. 

The first alternative is to implement very elementary function, but highly 
integrated processors. Each processor is explicitly designed to compute a Radix-2 
Butterfly and cannot be reprogrammed to compute other signal processing 
algorithms. In Section 4.2 we describe such an element. Previous investigators 
have designed integrated CMOS bit-serial processors to compute fixed point 
Butterflies (see Denyer and Renshaw). 

The second alternative is to  design a high performance reprogrammable 
processor capable of executing an instruction stream. This is the approach that 
SPEC has chosen to pursue in the Phase I1 program. While this approach is not 
as fast as the massively parallel, dedicated DFT Butterfly processor, it has a much 
broader range of applications and is a much more attractive commercial product. 

Figure 4-1 shows the four basic processor families, Complex Instruction Set 
Computer (CISC), Reduced Instruction Set Computer (RISC), and Digitial Signal 
Processor (DSP). An example of a CISC processor is the Motorola 68030 
microprocessor, which is a highly integrated device with many thousands of 
transistors. Likewise highly integrated DSPs, such as the Motorola 96000, and 
RISC processors, such as the Motorola 88000, are implemented in silicon and 
require in excess of 100,000 transistors. Clearly, processors of these complexities 
will not be practical in GaAs for several years. 

Sun Microsystems has developed a RISC architecture which is suitable for 
implementation in GaAs. The current silicon based RISC processor used in Sun 
Series-4 workstations is implemented in a Fyjitsu gate array. The design 
required approximately 16,000 of the available 20,000 gates in the gate array. 

Sun Microsystems has licensed the SPARC architecture to Cypress 
Semiconductor which is currently producing a very high performance CMOS 
version of the processor. Sun Microsystems has also licensed the architecture to  
BIT which has an ECL version of the SPARC processor in development. 

SPEC has held discussions with Sun Microsystems concerning licensing of the 
SPARC architecture for GaAs applications. In these discussions Sun has 
expressed a strong interest in licensing the technology to SPEC for either 
embedded applications or commodity chip production. 
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Figure 4-1 Commercial Processor Architectures. 
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SPEC is very confident that the SPARC RISC architecture can be realized in a 
GaAs standard cell design. Vitesse and GigaBit Logic currently offer 10,000 gate 
standard cells and are bringing 20,000 gate standard cells to market in the fourth 
quarter of 1988. It is virtually certain that in the time frame of the Phase I1 
program standard cells of approximately 30,000 to 40,000 gates will be available. 

It is apparent from recent literature35-47 that numerous hardware design 
approaches have been investigated for high speed Fourier transforms. To date, no 
known DFT specific GaAs hardware has been developed and reported in the 
literature. 

General purpose Bit-Serial techniques have been studied at length48-54, and have 
been implemented in a number of applications. 

4.2 DedicatedBitrSerialDFTProcessorElements 

The Butterfly processor shown in Figure 3-3 can be easily implemented as a Bit- 
Serial processor. Denyer and Renshaw describe techniques for implementing 
complete bit-serial processors in CMOS using a specialized silicon compiler. 
High level macros have been devised to implement lower level arithmetic 
functions such as add, subtract, multiply, and divide, and low level control 
functions such as bit delay. The arithmetic bc t ions  described are fixed point 
operations. Other investigators have reported bit-serial implementations of 
floating point arithmetic operations55. Similar implementations are now 
practical in GaAs. 

A complete Radix-2 Butterfly processor is shown in Figure 4-2. A global clock is 
used to synchronously clock in the complex floating point variables A and B. A 
complex floating point adder and subtractor are used to compute the complex sum 
and difference. The difference (A - B) is clocked into a complex multiplier which 
computes the product of (A - B) W, and the sum (A + B) is clocked into a delay 
which synchronizes the two outputs. 

In a highly parallel implementation such as the one described in Section 3.2.1, the 
time required for a synchronous bit-serial system to complete a single transform 
stage is determined by the computational complexity of the most extensive 
calculation. Therefore, unless all computations within a single stage can be 
reduced in complexity, nothing is achieved by reducing the complexity of the 
remaining calculations. In an asynchronous system, in which each PE initiates 
processing only after receiving valid A and B inputs from the previous stage, time 
savings can be realized if the computational complexity is properly spread over 
computational nodes. 

34 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

P CADD 

SPEC 
Systems & Processes Engineering Corporation 

- A 

b CSUB 
B 

b CMUL 

I 

Global Clock 

1 

I 
I l  

A - B  4-l 

t 
Bit-Serial Radix-2 Butterfly Primitive I 

W 

F'igure 4-2 Dedicated Bit-Serial Floating Point Butterfly Processor. 

35 

W [A - B] - 



I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
i 

Complex Parallel Operation 
Complex Floating Point Addition 
Complex Floating Point Subtraction 
Complex FloatinQ Point Multiplication 

SPEC 
Systems & Pracesses Engineering Corporation 

5 8  
5 8  

634 

Bit-Serial Arithmetic Operation I Clock Cycles 

32-Bit Floating Point Addition 
32-Bit Floating Point Subtraction 
32-Bit Floating Point Multiplication 

Complex Sequential Operation 
Complex Floating Point Addition 
Complex Floating Point Subtraction 
Complex Floating Point Multiplication 

4 8  
4 8  

576 

1 1 6  
1 1 6  

2 5 3 6  

Table 4-1 Floating Point Arithmetic Operation Timing. 

The number of clock cycles required to compute a complex floating point Butterfly 
is equal to the time required to compute a complex additiodsubtraction and a 
complex multiply, 

CBF = 58 + 634 = 692 clock cycles 

for completely parallel arithmetic operation and, 

CBF = 116 + 2536 = 2652 clock cycles 

for sequential arithmetic operation. 

With a 1 GHz clock rate and completely parallel arithmetic operation, the time 
required to compute a Radix-2 Butterfly, TBF, is equal to 

TBF = 692 cycles / 1 GHz = 692 nsec 

and for a 2 GHz clock 

TBF = 692 cycles / 2 GHz = 346 nsec. 
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Therefore, the total time required to compute a completely parallel, 10 stage, 
length-1024 transform (latency) is 6.92 (3.46) psec at 1 GHz (2 GHz). 

These estimates assume that data transfer can be accomplished concurrently 
with the computation by buffering the serial inputs. The communication data 
rate, RcOmm, required to transfer 64 bit complex data between stages is equal to 

Rc,m = 64 bits / 692 nsecs = 92 Mbitdsec 

for 1 GHz operation. 

4.3 RISC Signal Processor 

After careful review of DFT algorithms and other classes of algorithms, SPEC has 
reached the following conclusions concerning basic algorithm characteristics 
and array processor requirements: 

Numerically Intensive Operation 

Requires Floating Point Coprocessor 

Communications Intensive Operation 

Requires Communications Coprocessor 

Coefficient/Constant Intensive Operation 

Requires Large Register Set o r  Fast Memory for Good Perfonnance 

GaAs Technology - Less than - 25,000 Gate Standard Cell 

RISC Architecture 
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The optimum solution set is: 

SPARC Processor 

Floating Point Coprocessor Defined in Architecture 

Compatible with Communications Coprocessor 

Very Large Fixed Point and Floating Point Register Sets 

Implemented in Silicon with a 20,000 Gate Array 

Architecture Compatible with ECL and GaAs Implementation 

4.3.1 SPARCProcessor 

The SPARC architecture defines an Integer Processor, a Floating Point 
Coprocessor (FPC), and an interface to a application dependent Coprocessor. The 
Processor, FPC, and Coprocessor can operate concurrently, Within the FPC 
separate floating point Addition, Subtraction, Multiplication, and Division Units 
can also operate concurrently. 

A typical array processor node configuration is shown in Figure 4-3. The 
Processor extracts instructions from the instruction stream and routes applicable 
instructions to either the FPC or the user defined coprocessor. 

The SPARC architecture has approximately 50 integer instructions, which fall 
into the following basic categories: 

Load and Store Instructions 

Arithmetic, Logical, and Shift Instructions 

Coprocessor Instructions 

Control & Transfer Instructions (Jumps, Calls, Traps, etc.) 

Read & Write Control Register Instructions 

' I 
I 
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Figure 4-3 Systolic Array Computational Node. 
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A large number of registers are implemented in the SPARC architecture. The 
registers are organized as overlapping sets to facilitate CALL and RETURN 
procedures. The architecture specifies between 6 and 32 windows, with each 
window containing 32 registers organized as shown in Figure 4-4. Each task sees 
8 GLOBAL registers, 8 LOCAL registers, 8 IN registers, and 8 OUT registers in a 
window. 

The IN and OUT registers are shared across windows, i.e. window W3 IN 
registers are common to window W2 OUT registers, and W3 OUT registers are 
common to W 4  IN registers. Procedures can quickly pass data through these 
shared registers. 

This register architecture can be exploited by numerical algorithms passing data 
to  subroutines, and as implemented by SPEC, the architecture allows subroutines 
to be nested six deep. 

The SPARC architecture specifies two operating modes, USER mode and 
SUPERVISOR mode. Array configuration and control software can execute in 
the secure SUPERVISOR mode, while numerical routines will execute in USER 
mode. 

A block diagram of the basic SPARC architecture to be implemented by SPEC is 
shown in Figure 4-5. The processor has separate 32-bit address and 
instructioddata busses. The operation of the processor is broken into two 
primary units, the Arithmetic and Logic Unit and the Shift Unit. Although the 
register file can have up to 32 overlapping windows, SPEC'S baseline GaAs 
implementation will provide only the six required minimum. 

Instructions can have up to two source registers and one destination register, 
thus two source operands can be operated on and returned to a different register 
by the Arithmetic and Logic Unit or the Shift Unit. Two Program Counters are 
maintained, one PC points to the current instruction address and one PC points t o  
the next instruction address. All instructions are 32 bits and are aligned on 32-bit 
boundaries in memory, simplifying instruction decode and execution. Only Load 
and Store instructions are used to access memory. All other instructions operate 
only on internal registers. 

A complete description of the SPARC architecture can be found in The SPARCTM 
Architecture Manual published by Sun Microsystems, Inc., Mountain View, 
California. 

40 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

SPEC 
Systems & Processes Engineering Corporation 

RETURN 

Figure 4-4 SPARC Register Window Architecture. 
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Figure 4-5 SPARC Processor Architecture. 
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4.3.2 Bibserial Floating Point Coprocessor 

The SPARC architecture specifies the instruction set, control registers, and 
operation of a Floating Point Unit. The FPU may be a coprocessor or integral to  
the processor. SPEC's design allocates the FPU to a coprocessor, due to the 
expected gate count required to implement the unit. 

SPEC's Floating Point Coprocessor (FPC) design consists of a register file, a 
Floating Point State Register, a four entry Floating Point Queue, an instruction 
decode and execution unit, a Multiplication Unit, a Division Unit, an Addition 
Unit, and a Subtraction Unit. The FPC will be designed in accordance with the 
ANSI/IEEE-754-1985 floating point specification. As specified by the SPARC 
architecture, each arithmetic unit can operate concurrently with other units. A 
block diagram of the FPC is shown in Figure 4-6. 

High performance silicon Floating Point Coprocessors, such as the Motorola 
68882 and the Intel 80387, are of equal or greater complexity than the 
accompanying CISC processor. SPEC has estimated the level of complexity for a 
full FPU implementation to be beyond the capability of current GaAs technology. 
Therefore, the arithmetic units will be implemented as bit-serial units to  lower 
the design complexity. 

This will degrade the performance of the FPC, but it will provide an avenue for 
implementing the FPC in near-term GaAs technology. Examination of the 
addition, subtraction, and multiplication times for bit-serial operation given in 
Table 4-1 reveals that these operations will, however, compare favorably in 
performance with fully parallel silicon units operating at much lower clock 
frequencies. As G A S  technology progresses, bit-serial operations can be 
expanded into fully parallel operations as technology permits. 

A design for the Floating Point Multiplication Unit is shown in Figure 4-7. Data 
from register file source 1 and register file source 2 is loaded into exponent and 
fraction buffers at the initiation of the instruction. This load operation initiates 
both a bit-serial exponent add operation and a bit-serial fraction (mantissa) 
multiply operation. Normalization data is fed from the bit-serial multiplier to the 
bit-serial exponent adder and the new floating point exponent and fraction are 
placed in a result buffer. At the completion of the bit-serial operation, the 
instruction completes by placing the result in the proper destination register. 
Exception, Rounding, Overflow, and Trap information is communicated to the 
Floating Point Status Register during the completion stage of the multiplication 
instruction. 
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A similar design has been establish d for the Fl ting Point Addition Unit, and is 
shown in Figure 4-8. Data from the Source 1 register and the Source 2 register is 
loaded into exponent and fraction buffers at the initiation of the floating point 
addition instruction. A bit-serial comparator compares the two exponents, 
determines which fraction is to  be shifted and by how much, and passes the data 
to the proper bit-serial shifter (delay). After normalization, the fractions are 
added by the bit-serial adder, with the carry fed to the comparator. The resultant 
fraction and exponent are then fed into a buffer. At the completion of the addition 
instruction, the result is loaded into the proper destination register. 

As shown in Figure 4-6, a four entry Floating Point Queue is provided to hold up to 
four instructions and instruction addresses. This design allows the FPC to 
operate concurrently with the processor and the Communications Coprocessor, 
discussed in the following section. 

4.3.3 Bit&erialArray Communications Coprocessor 

To facilitate rapid inter-node data transfer, SPEC has developed a unique 
communications coprocessor architecture. This communications architecture 
offers several advantages over traditional inter-processor communication 
methodologies, such as dual-port RAM, global RAM, and low speed, memory 
mapped, serial communication devices. 

An overview of the communications coprocessor architecture is shown in Figure 
4-9. The coprocessor architecture includes a physical interface to  the host 
processor, an instruction decode and execution unit, status registers, a 
communications queue for pending instructions and addresses, communication 
registers, and multiple communication units to service the physical link. Each 
communication unit includes input and output buffers, low level link control 
fitnctions, and interface drivers/receivers. 

A SPARC compatible implementation of the communications coprocessor is 
shown in Figure 4-10. The unit has full 32-bit address and instructioddata buses, 
an eight entry communications queue, a number of status registers, eight full- 
duplex bit-serial communication units, and 32 32-bit communication registers. 
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Figure 4-9 Communications Coprocessor Overview. 
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Figure 4-10 SPARC Communications Coprocessor Architecture. 
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The coprocessor includes a Communications State Register, for traps, exception 
control, condition codes, and queue control, a Channel Enable Register, to  allow 
selective software enable of individual communication units, a Channel Output 
Status Register, to allow testing of output channel status, a Channel Input Status 
Register, to allow testing of input channel status, and a Node Address Register, 
which is set at power-up by external pin programming to enable the processor 
node to recognize its array position. All communications coprocessor registers 
are shown in Figure 4-11. 

Operation of the bit-serial communication units is shown in Figure 4-12. Each 
communication unit operates independently and concurrently with the other 
units. Each unit is full-duplex, and can send and receive data simultaneously. 

Data transfer between nodes is accomplished in 32-bit packets, with each 
communication unit transmiting up to 32 packets in a single SEND operation. 
Hardware handshaking between units is accomplished using a Device Ready 
(RDY) signal. Communication Unit registers are described in Figure 4-13. 
Instruction execution is depicted in Figure 4-14. A SEND instruction moves up to 
32 data words from the Communication Registers to the specified Communication 
Unit Output Register, as the register becomes available. After loading the Output 
Register, control is passed to the Communication Unit for completion of the 
transmit operation. After the word is transmitted, control is returned to the main 
execution unit for completion of the SEND instruction. 

Likewise, a RECV instruction performs the reverse operation, loading data from 
a Communications Unit Input Register into the Communication Registers. 

The Communication Unit Input & Output Registers are not directly accessible by 
the host processor. All incoming and outgoing data passes through the 
Communication Registers, which are accessed using LOAD and STORE 
instructions. 

Definition of the Communications Coprocessor LOAD instruction is detailed in 
Figure 4-15. The instruction definition follows the guidelines specified by the 
SPARC architecture. Three LOAD instructions are defined, Load Coprocessor 
Register (LDC), Load Double Coprocessor Register (LDDC), and Load Coprocessor 
State Register (LDCSR). The effective address is formed by the processor source 
registers or by a source register and a sign extended 13-bit offset. 

The STORE instruction is defined in Figure 4-16. Four instructions are defined, 
Store Coprocessor Register (STC), Store Double Coprocessor Register (STDC), 
Store Coprocessor State Register (STCSR), and Store Double Coprocessor Queue 
(STDCQ). 
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Figure 4-11 Communications Coprocessor Register Architecture. 
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Figure 4-15 Communications Coprocessor Load Instructions. 
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110100 Store Coprocessor Register 
110111 Store Double Coprocessor Register 
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1 1  rd I 0P3 I rsl 101 ignored 

11 rd I 0P3 I simml3 I 
31 29 24 18 13 12 4 0 

31 29 24 18 13 12 0 

I owode OP3 operation I 

I Assembly Language Syntax I 
st Cn, [address] 
std Cn, [address] 
st CSRn, [address] 
std CQ, [address] 

Effective Address: 
flrsl] + firs21 or 
r[rsl] + sign-ext(simml3) 

Figure 4-16 Communications Coprocessor Store Instructions. 
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The SPARC architecture also defines Conditional BRANCH instructions for the 
coprocessor. The BRANCH instruction has a 22-bit displacement. Four condition 
codes are supported, supplying 16 specific branch conditions. The use of the 
condition codes is determined by the specific application. SPEC has identified two 
condition codes to be used with the TEST instruction to determine the status of the 
Input and Output Communication Unit buffers. Figure 4-17 describes the 
operation of the Communications Coprocessor conditional branch instruction. 

The last class of coprocessor instructions defined by the SPARC architecture are 
the Coprocessor Operate instructions. These are general purpose instructions t o  
be defined by the application. SPEC has identified four coprocessor operate 
instructions, Send Data Packet (CSEND), Receive Data Packet (CRECV), Test 
Input (Output) Status Register (CTSTcc), and Flush Communication Unit Buffer 
(CFLUSH). These instructions are specified in Figure 4-18. 

The CSEND instruction sends up to 32 data words over a communications link 
and the CRECV instruction receives up to 32 data words over a link. 
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Instruction Format 

OOlal cond I l l 1  I disp22 I 
31 2928 24 21 0 

opcode 

CBA 
CBN 
C 83 
CB2 
C 823 
CB1 
CB13 
CB12 
CB123 
CBO 
C BO3 
C BO2 
CB023 
CBO1 
CBO13 
CB012 

cond 

1000 
0000 
0111 
0110 
01 01 
01 00 
001 1 
001 0 
0001 
1001 
1010 
101 1 
1100 
1101 
1110 
1111 

bp-CP-cc(1 :O] test operation 

Branch Always 
Branch Never 
Branch if 3 set 
Branch if 2 set 
Branch if 2 or 3 set 
Branch if 1 set 
Branch if 1 or 3 set 
Branch if 1 or 2 set 
Branch if 1 or 2 or 3 set 
Branch if 0 set 
Branch if 0 or 3 set 
Branch if 0 or 2 set 
Branch if 0 or 2 or 3 set 
Branch if 0 or 1 set 
Branch if 0 or 1 or 3 set 
Branch if 0 or 1 or 2 set 

Assembly Language Syntax 

cba{,a} 
cbn{,a) 
cb3{ ,a} 
cbWd 
cb23{ ,a} 
cbl {,a} 
cb 1 3 {,a} 
cb12{,a} 
cb123{,a} 
cbO{,a} 
cb03{ ,a} 
cb02{ ,a} 
cb023{,a} 
cbOl {,a} 
cbOl3{,a} 
cbOl2{,a} 

label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 

Condition Codes: 

0 - Input Buffer Status 
1 - Output Buffer Status 
2 - Reserved 
3 - Reserved 

{,a} optional annul bit: 

If branch not taken and annul set, 
delay instruction not executed. 

If branch taken, annul bit ignored 
and delay instruction executed. 

Figure 4-17 Communications Coprocessor Branch Instructions. 
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CSEND 1 101 1 0 OOOOOxxxx 
CRECV 1 101 1 0 00001 xxxx 
CTSTcc 1 101 1 1 OOOOOyyyy 
CFLUSH 1101 11 00001zzzz 
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Send Data Packet 
Receive Data Packet 
Test Input (Output) Status Register 
Flush Communication Unit Buffer 

Instruction Format 

101 rd I 0P3 I rsl OPC rs2 
31 29 24 18 13 4 0 

send Cn, Cum, xxxx 
recv Cum, Cn, xxxx 
ctest CSRn,yyyy 
cflush zzzz 

rd - Cn; rsl - Cum; rs2 - ignored 
rd - Cn; rsl - Cum; rs2 - ignored 
rd - ignored; rsl - CSRn; rs2 - ignored 
rd - ignored; rsl - ignored; rs2 - ignored 

I Assembly Language Syntax I Register Usage 1 

xxxx - Number of 32-Bit Words 
yyyy - Input (Output) Unit Number 
zzzz - Communication Unit Number 

Cn - Communications Register n 
Cum - Communications Unit m 
CSRn - Communication Status Register n 

Figure 4-18 Communications Coprocessor Operate Instructions. 
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6.0 System Simulation 

6.1 ModelOverview 

SPEC has developed model for a computer program to simulate arbitrary systolic 
array processor topologies. The simulation is designed to model the data load 
operation, the computations performed at each node, the packet or data routing 
between nodes, and the operation to unload data from the array (see Figure 5-1). 

The Systolic Axray Simulator (SAS) program is designed to assess the real-time 
performance of an array processor. This assessment includes the processing rate 
of the node processor (specified in MIPS) and the communications rate between 
nodes (specified in Mbits/sec). The program is designed for asynchronous array 
operation. 

6 2  Implementation 

SAS is being implemented in the C programming language. At the writing of 
this report, development is currently in the specification stage. Structures are 
developed for the input data description, the node interconnection, the algorithm 
specification, and parameter entry. 

An input data structure includes the raw signal data, and a time stamp for the 
arrival of each data point. 

The node topology description includes the number of nodes and the 
interconnections made by each node. The program can read a data file which 
specifies the array topology. 

When a data packet is created at a node it is entered into a packet array, which the 
main program loop analyzes during each pass to  determine the state of the packet 
transfer. It is envisioned that eventually each node in the array will be capable of 
routing data packets, therefore provisions have been made for simulation of the 
routing algorithm at each node. 

Currently, the program is capable of accepting data from the user specifying the 
dimensionality of the array (1-D, 2-D, or 3-D), the processing rate (MIPS), the 
communications rate (Mbitdsec), and the number of nodes in each dimension. 
The user can also select a routing methodology. 
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Compute 
Signal Data 

Load Array 4 

5 

I 

Compute 
Node Algorithms 

v 
Route 

Data Packets 

Systolic Array Simulator (SAS) Program 

Simulated Real-Time 

- Processor Rate (MIPS) 

- Communications Rate (Mbitdsec) 

Asynchronous Operation 

Compute 
Statistics 

Figure 5-1 Systolic Array Simulator (SAS) Functions. 
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The main program loop will execute the following sequences: 

1. Load the data into the array at the communications data rate. 

2. Simulate the signal processing algorithm and communications 
operations using "pseudo code" at each node. 

3. Simulate the data flow from node to node. 

4. Unload the data from the array as it becomes available at the outputs. 

5. Continue execution of the main loop until all data has passed through 
the array. 

6. Analyze the resultant data for numerical accuracy. 

7. Analyze the array timing statistics gathered during the simulation. 

SPEC is confident that this simulator will be completed early on during the Phase 
I1 program to support the analysis of optimum communications methods to  be 
employed in the systolic array. Since the user can specify the algorithm to  be 
executed at each node, the simulator should be very helpful in designing parallel 
processing algorithms, and assessing their capabilities and function. 
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6.0 Proposed Phase II Implementation 

6.1 Foundry Processes & Capabilities Review 

SPEC has reviewed the capabilities of a number of GaAs foundries, including site 
visits to McDonnell Douglas, Texas Instruments, Rockwell, GigaBit Logic, and 
Vitesse. The capabilities reviewed include process technology, capability of design 
staff, facilities, and company orientation. A diagram of the foundries reviewed is 
presented in Figure 6-1. 

At present, SPEC believes that Vitesse offers the best solution because of their 
standard cell design capability, process technology, process maturity, production 
capacity, staff experience, and willingness and enthusiasm to participate in the 
Phase I1 program. 

SPEC expects to  continue this capabilities review in the early stages of the Phase 
I1 program, to include a visit to TriQuint, and follow-up visits to Vitesse and 
GigaBit Logic. 

6.1.1 GigaBit Logic, Inc. 

GigaBit Logic, Inc. offers custom, standard cell, gate array, and MSI products. 
GigaBit currently offers 5000 and 10,000 gate standard cells, with 20,000 gate 
devices projected for 1989. GigaBit's standard cells are available in the following 
1 pm processes: 

Depletion Mode MESFET 0) 
Low Power Depletion mode MESFET (LPD) 
High Margin EnhancementDepletion mode MESFET (HME/D) 
EnhancementIDepletion mode MESFET (ED) 

GigaBit standard cells can be designed with ECL, TTL, or CMOS I/O 
compatibility. Power dissipation for the 10,000 gate, current steering logic, E/D 
device is on the order of 0.4 mWatt/gate. Loaded gate delays range from 50 to  150 
psec. Flip Flops operating at 7 - 8 GHz have been realized. Up to three levels of 
metalization are available. 

GigaBit offers a number of standard cell Macros for I/O and internal cells, 
including input, output and clock buffers, accumulators, flip flops, inverters, nor 
gates, and many other functions. RAM and ROM cells are also now available. 
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FOUNDRIES 

Full Custom 
Corporate R&D Labs 

Pilot Lines 

Gate Array 
Standard Cell 
Full Custom 

GigaBit Logic 

Anthony Conoscenti 

I Vitesse 

Dr. Raymond Milano 

m TriQuint 

Louis Penque 

Figure 6-1 Foundries Surveyed. 
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Packaging options currently include 68 pin and 144 pin leaded chip carriers, with 
other package options in development. 

Seattle Silicon and GigaBit Logic have jointly developed a GaAs compiler for 
custom circuit designs. The compiler has been used to develop a small ALU in 
Capacitor Diode FET Logic (CDFL). Discussions with Seattle Silicon indicate, 
however, that no additional development has occurred on this product. 

Proprietary SPICE models of GigaBit processes and device characteristics are 
available. Daisy Systems, Mentor Graphics, and VLSI Technology workstations 
are supported. 

GigaBit has a large production facility with a Class 10 cleanroom. 

6.18 Vitesse Semiconductor Corporation 

Vitesse Semiconductor Corporation offers complete foundry services, including 
wafer fabrication, packaging, testing, and quality assurance. The process is 
characterized by the following parameters: 

EnhancementDepletion MESFET Technology 
NMOS-like Structure 
Simple - 9 Mask Steps 
Three levels of metal interconnect (Aluminum Metalization) 
1.0 p m  Process Lithography 
Self-aligned Gates 
Excellent Threshold Voltage Control 
High Level of Integration (20K Gates) 
High Speed Packages 

The Vitesse process electrical parameters are as follows: 

Gate Delay = 120 psec 
Metal Line Delay = 60 psedmm of metal 
Fan-Out Delay = 35 psedf.0. 
Clock to Q Delay = 420 psec 
Power Dissipation = 0.4 mWatt/gate 

Vitesse currently offers several tools for custom designs. By fourth quarter 1988 
these tools will include a library of 45 Macro Cells (SSIMSI) and 6 Mega Cells 
(LSI components). By third quarter 1989 they project having 250 Macro Cells, 10 
Mega Cells and Compiled Cells (data path unit, state machine, & RAM). 
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Vitesse has developed a custom SPICE model of their process to assist in device 
design. Vitesse supports Sun, DEC VAX, Apollo and other major engineering 
workstations. 

Vitesse has a 45,000 square foot fabrication facility, a Class 10 clean room, and 
over $lM in high speed test equipment. 

6.1.3 TriQu.int Semiconductor, Inc. 

TriQuint Semiconductor, Inc. offers a wide range of both digital and analog GaAs 
foundry services. TriQuint offers a 1 pm Enhancement'Depletion Mode process 
for high level integration. 

TriQuint offers a Q-LOGIC Standard Cell Design capability, including a large 
library of macros. TriQuint standard cells are capable of speeds of up to 2 - 3 GHz. 
Input and output cells are available for ECL, "L, and CMOS compatibility. 

Two logic families are available, ZFL (Zero-diode FET Logic) and SCFL (Source 
Coupled FET Logic). Currently, 6000 equivalent gates are available in the 
standard cell. With SCFL cells, gate delays are 65 psec, and with ZFL cells, gate 
delays are 150 psec. Loading delays for SCFL and ZFL are 13 psedfan out (or 40 
psedmm of wire) and 7 psedfan out (or 50 psedmm of wire), respectively. The 
maximum toggle rate for SCFL Flip Flops is 2 GHz, and 1 GHz for ZFL Flip Flops. 

SCFL dissipates 2.7 mWatt/gate and ZFL dissipates 0.8 mWatt/gate (2-input NOR). 

Multilayer ceramic packages, of up to 132 pins are available. 

Other TriQuint services include layout and verification, testing, and packaging. 
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6.1.4 Other Foundry Sources 

6.1.4.1 Texas Instruments 

Texas Instruments is currently developing a 32-bit GaAs microprocessor for the 
Defense Advanced Research Project Agency (DARPA). The processor has 
separate instruction and data memory (Harvard architecture) and a floating point 
coprocessor (now approximately 80% complete). The processor is designed to 
execute the MIPS standard instruction set. 

Texas Instrument's processor is a 12,000 gate, full custom design implemented in 
HI2L. Texas Instruments also offers GaAs gate arrays of up to 13,000 gates. 

6.1.4.2 McDonneU Doughs corporation 

Like Texas Instruments, McDonnell Douglas is also a DARPA pilot line for GaAs 
production. McDonnell Douglas uses a low power Junction FET (JFET) GaAs 
process. This process does not have the speed capability of TI'S HI2L process, but 
is much more suitable for implementation of on-board RAM. 

McDonnell Douglas has also implemented a MIPS Instruction Set Architecture 
(ISA) compatible RISC microprocessor. 

6.1.4.3 Rockwell International Coxporntion 

Rockwell recently developed an 8-bit slice using depletion mode technology. This 
slice includes 32 registers, and was implemented in approximately 1200 gates. 
Discussions with Rockwell indicate that they have not yet developed an E D  
process. 

6 2  CustomvsStandardCellvsGateArrayApp~ch 

After assessment of the design requirements, particulary gate count, SPEC has 
determined that a standard cell approach is the most cost effective and realizable 
design approach. Integration densities to 20,000 gates are currently realizable 
using Vitesse standard cell integrated circuits. 

SPEC has developed estimates of the number of gates and pins required to 
implement the processor, floating point coprocessor, and the communications 
coprocessor. The estimates are detailed in Table 6-1. The RISC processor should 
require approximately 18,000 gates in a 128+ pin package. The floating point 
coprocessor should require approximately 19,000 gates in a 112+ pin package, 
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3 
3 
6 

1 2  

Device Element 

4096  
1 2 8  

2500 
1024 
2484 
3508  
2228 
2228 

128  
2 5 6  
2 5 6  

1 8 8 3 6  

4096  
6 4 0  

2000  
2048 
6048  

6 4  

2 5 6  
2 5 6  

15536-  

128  

Vocessor 
Register File 
Status Registers 
Instruction Decode & Operation 
Program Counters 
Arithmetic & Logic Unit 
Shift Unit 
Address Bus 
Instruction/Data Bus 
Misc. Control, Power. & Ground Signals 

~ 

Zloating Point Coprocessor 
Register File 
State Register 
Instruction Decode & Operation 
Floating Point Addressllnstruction Queue 
Bit-Serial Multiplication Unit 
Bit-Serial Division Unit 
Bit-Serial Addition Unit 
Bit-Se rial Subtraction Unit 
Address Bus 
InstructionlData Bus 
Misc. Control, Power, & Ground Signals 

bray Communications Coprocessor 
Register File 
Status Registers 
Instruction Decode & Operation 
Communications Address/lnstruction Queue 
Bit-Serial Communication Units 
Node Address 
Address Bus 
Instruction/Data Bus 
Misc. Control, Power, & Ground Signals 

Gates 7 

Table 6-1 Device Gate Count and Pin Count Estimates. 
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while the communications coprocessor should require approximately 15,500 gates 
in a 144+ pin package. 

6.3 Demonstration Unit Design 

As delineated in Figure 6-2, the Phase I1 development program will consist of the 
parallel development of the three SPARC units, the processor, FPC, and ACC. 
Development will proceed in parallel on all three units, with priority initially on 
the basic RISC processor, followed by the communications coprocessor (required 
to  implement the array), and subsequently the floating point coprocessor. 

6.3.1 Hardware Implementation 

A hardware demonstration unit will be designed on a 9-U VMEbus card, 
compatible with a Sun Microsystems workstation. The demonstration hardware 
will consist of 16 processor nodes, organized as two sets of eight nodes. The nodes 
will be interconnected to execute a length-64 Block DFT. A diagram of the 
proposed hardware is shown in Figure 6-3. 

Each processor will have a minimum of 4 Kbytes of high speed dual-ported RAM 
for communication with the control processor (the workstation CPU). The 
demonstration unit will be designed to facilitate downloading of software to the 
RISC processors. 

The demonstration unit will be designed to allow reconfiguration of the array by 
jumpers on the printed circuit board. 

6.3.2 SoftwareDevelopment 

Software development for the SPARC systolic array processor will occur on a Sun 
Series-4 workstation, which is based on the SPARC architecture. Sun offers a 
wide range of software development tools, including compilers, symbolic 
debuggers, and other utilities. Array processor code can be partially debugged on 
the workstation. 

SPEC will develop a length-64 DFT software package to  demonstrate the 
capabilities of the array processor. Other signal processing algorithms (as 
described in this report) will be implemented on the SPARC systolic array 
processor, per customer direction. 
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Figure 6-2 Phase I1 Development Program Objectives. 
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VMEbus 

Figure 6-3 VMEbus (9U) Compatible GaAs Systolic Array DFT Processor. 
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7.0 ConclusionS 

SPEC has developed an innovative array processor architecture for computing 
Fourier transforms and other commonly used signal processing algorithms. The 
architecture described in this report is designed to extract the highest possible 
array performance from state-of-the-art GaAs technology. SPEC'S architectural 
design includes a high performance RISC processor implemented in GaAs, along 
with a Floating Point Coprocessor and a unique Array Communications 
Coprocessor, also implemented in GaAs technology. Together, these data 
processors represent the latest in technology, both from an architectural and 
implementation viewpoint. 

SPEC has examined numerous algorithms and parallel processing architectures 
to determine the optimum array processor architecture. SPEC has developed an 
array processor architecture with integral communications ability to  provide 
maximum node connectivity. The Array Communications Coprocessor embeds 
communications operations directly in the core of the processor architecture. 

A Floating Point Coprocessor architecture has been defined that utilizes Bit-Serial 
arithmetic units, operating at very high frequency, to perform floating point 
operations. These Bit-Serial devices reduce the device integration level and 
complexity to  a level compatible with state-of-the-art GaAs device technology. 
Operating at clock frequencies in excess of 1 GHz, these Bit-Serial units compare 
favorably to parallel units implemented in silicon technology, while providing 
inherent radiation hardness and superior speed-power product of GaAs. 

SPEC has selected Sun Microsystems' Scalable Processor ARChitecture (SPARC) 
as a basis for the high speed RISC processor. The SPARC is ideally suited for 
array processor applications, with a large register set, efficient instruction set, 
and simple implementation. The SPARC RISC processor has previously been 
implemented in a silicon gate array, with the design requiring less than 20,000 
gates. This compares very favorable to other RISC processor implementations, 
which have required many times the device complexity. 

SPEC has selected Vitesse Semiconductor's enhancementidepletion mode process 
for design implementation. Vitesse's GaAs foundry is now offering Standard Cell 
design capability up to 20,000 gates, which offers the best cost and performance 
alternative, and ensures success in a Phase I1 development activity. 

In selecting SPARC basis for the processor, SPEC has ensured a high level of 
software support and design activity for successfid commercialization of the 
product in Phase 111. At the end of Phase 11, SPEC will have demonstrated both a 
high performance DFT array processor architecture and GaAs RISC design. 
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